Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(17): 26099-26111, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492143

RESUMEN

Fe-enriched biochar has proven to be effective in reducing Cd uptake in rice plants by enhancing iron plaque formation. However, the effect of Fe on biochar, especially the biochar with high S content, for Cd immobilization in rice rhizosphere was not fully understood. To obtain eco-friendly Fe-loaded biochar at a low cost, garlic straw, bean straw, and rape straw were chosen as the feedstocks for Fe-enhanced biochar production by co-pyrolysis with Fe2O3. The resulting biochars and Fe-loaded biochars were GBC, BBC, BRE, GBC-Fe, BBC-Fe, and BRE-Fe, respectively. XRD and FTIR analyses showed that Fe was successfully loaded onto the biochar. The pristine and Fe-containing biochars were applied at rates of 0% (BC0) and 0.1% in pot experiments. Results suggested that BBC-Fe caused the highest reduction in Cd content of rice grain, and the reductions were 67.9% and 31.4%, compared with BC0 and BBC, respectively. Compared to BBC, BBC-Fe effectively reduced Cd uptake in rice roots by 47.5%. The exchangeable and acid-soluble fraction of Cd (F1-Cd) in soil with BBC-Fe treatment was 37.6% and 63.7% lower than that of BC0 and BBC, respectively. Compared to BC0, soil pH was increased by 0.53 units with BBC-Fe treatment. BBC-Fe significantly increased Fe oxides (free Fe oxides, amorphous Fe oxides, and complex Fe oxides) content in the soil as well. DGT study demonstrated that BBC-Fe could enhance the mobility of sulfate in the rhizosphere, which might be beneficial for Cd fixation in the rhizosphere. Moreover, BBC-Fe increased the relative abundance of Bacteroidota, Firmicutes, and Clostridia, which might be beneficial for Cd immobilization in the rhizosphere. This work highlights the synergistic effect of loaded Fe and biochar on Cd immobilization by enhancing Cd deposited with Fe oxides.


Asunto(s)
Oryza , Contaminantes del Suelo , Hierro/química , Cadmio/análisis , Oryza/química , Óxidos , Rizosfera , Carbón Orgánico/química , Suelo/química , Raíces de Plantas/química , Contaminantes del Suelo/análisis
2.
Environ Pollut ; 342: 123025, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040185

RESUMEN

Transformation, fragmentation, dissolution, and oxidation of biochar are inevitable in the environment, which will undoubtedly accelerate the release of biochar-derived dissolved organic matter (BDOM) into various water bodies. In addition, biochar may affect disinfection by-products (DBPs) during water treatment and subsequent disinfection. In this study, biochars were derived at three selected pyrolysis temperatures (350 °C, 500 °C, and 650 °C) from rice husk, wheat straw, and shrimp shell, and BDOM was extracted from biochar-derived in artificial seawater and ultrapure water. The TOC analyzer results showed that the concentrations of three BDOM decreased with increasing pyrolysis temperature. The BDOM derived from rice husk biochar and wheat straw biochar in seawater was lower than that in ultrapure water, while that of shrimp shell biochar showed an opposite trend, being released in seawater at nearly twice the extent of that in ultrapure water at 350 °C. Moreover, BDOM showed a catalytic effect on chlorination, and GC analysis showed that the concentrations of its DBPs were affected by pH. The concentration of halogenated acetic acid reached the highest value (54.51 µg/L) in weak acidic environment, while the concentrations of trihalomethane and halogenated acetonitrile had the highest values (23.63 and 47.53 µg/L, respectively) in alkaline conditions. The concentrations of all the three DBPs were lowest under neutral pH conditions. In addition, the volatile halogenated DBPs such as dichloroacetone and trichloroacetone were easily hydrolyzed under alkaline conditions. Therefore, it is something be aware of the release of BDOM and the effects of chlorination DBPs when biochar is used for water treatment or water purification.


Asunto(s)
Carbón Orgánico , Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Desinfección/métodos , Cloro/análisis , Halogenación , Materia Orgánica Disuelta , Purificación del Agua/métodos , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua/análisis
3.
J Environ Sci (China) ; 138: 301-311, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38135397

RESUMEN

Environmental effects of nano remediation engineering of arsenic (As) pollution need to be considered. In this study, the roles of Fe2O3 and TiO2 nanoparticles (NPs) on the microbial mediated As mobilization from As contaminated soil were investigated. The addition of Fe2O3 and TiO2 NPs restrained As(V) release, and stimulated As(III) release. As(V) concentration decreased by 94% and 93% after Fe2O3 addition, and decreased by 89% and 45% after TiO2 addition compared to the Biotic and Biotic+Acetate (amended with sodium acetate) controls, respectively. The maximum values of As(III) were 20.5 and 27.1 µg/L at 48 d after Fe2O3 and TiO2 NPs addition, respectively, and were higher than that in Biotic+Acetate control (12.9 µg/L). The released As co-precipitated with Fe in soils in the presence of Fe2O3 NPs, but adsorbed on TiO2 NPs in the presence of TiO2 NPs. Moreover, the addition of NPs amended with sodium acetate as the electron donor clearly promoted As(V) reduction induced by microbes. The NPs addition changed the relative abundance of soil bacterial community, while Proteobacteria (42.8%-70.4%), Planctomycetes (2.6%-14.3%), and Firmicutes (3.5%-25.4%) were the dominant microorganisms in soils. Several potential As/Fe reducing bacteria were related to Pseudomonas, Geobacter, Desulfuromonas, and Thiobacillus. The addition of Fe2O3 and TiO2 NPs induced to the decrease of arrA gene. The results indicated that the addition of NPs had a negative impact on soil microbial population in a long term. The findings offer a relatively comprehensive assessment of Fe2O3 and TiO2 NPs effects on As mobilization and soil bacterial communities.


Asunto(s)
Arsénico , Microbiota , Nanopartículas , Arsénico/metabolismo , Suelo , Acetato de Sodio/metabolismo , Acetato de Sodio/farmacología , Bacterias/metabolismo
4.
Bioresour Technol ; 386: 129482, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37451511

RESUMEN

Hydrochars formed by hydrothermal carbonization of hickory wood, bamboo, and wheat straw at 200 °C were modified by potassium permanganate (KMnO4) for the sorption of Pb(II), Cd(II), and Cu(II). The wheat straw hydrochar (WSHyC) modified with 0.2 M KMnO4 resulted in the most promising adsorbent (WSHyC-0.2KMnO4). Characterization of WSHyC and WSHyC-0.2KMnO4 revealed that the modified hydrochar features large specific surface area, rich of surface oxygenic functional groups (OCFG), and a significant amount of MnOx micro-particles. Batch adsorption experiments indicated that the adsorption rate by WSHyC-0.2KMnO4 was faster than for WSHyC, attaining equilibrium after around 5 h. The optimum adsorption capacity (Langmuir) of Pb(II), Cd(II), and Cu(II) by WSHyC-0.2KMnO4 was 189.24, 29.06 and 32.68 mg/g, respectively, 12 âˆ¼ 17 times greater than by WSHyC. The significantly enhanced heavy metal adsorption can be attributable to the increased OCFG and MnOx microparticles on the surface, thereby promoting ion exchange, electrostatic interactions, and complexation mechanisms.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Cadmio , Permanganato de Potasio , Carbón Orgánico , Plomo , Adsorción , Triticum , Cinética
5.
Ecotoxicol Environ Saf ; 257: 114928, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37094485

RESUMEN

Pig manure could be an effective fertilizer source for soil, but with high concentrations of xic elements. It has been shown that the pyrolysis method could largely reduce the environmental risk of pig manure. However, the comprehensive analysis of both toxic metals immobilization effect and environmental risk of pig manure biochar applied as a soil amendment is rarely addressed. To address the knowledge gap, this study was carried out with pig manure (PM) and pig manure biochar (PMB). The PM was pyrolyzed at 450 â„ƒ and 700 â„ƒ, the corresponding biochar was abbreviated as PMB450 and PMB700, respectively. The PM and PMB were applied in a pot experiment growing Chinese cabbage (Brassica rape L. ssp. Pekinensis) with clay-loam paddy soil. The application rates of PM were set at 0.5% (S), 2% (L), 4% (M) and 6% (H). With the equivalent mass principle, PMB450 and PMB700 were applied at 0.23% (S), 0.92% (L), 1.84% (M), 2.76% (H), and 0.192% (S), 0.7% (L), 1.4% (M), 2.1% (H), respectively. Parameters of Chinese cabbage biomass and quality, total and available concentrations of toxic metals in soil, and soil chemical properties were systemically measured. The main results of this study showed that compared with PM, PMB700 was more effective than PMB450, which induced the highest reductions of Cu, Zn, Pb, and Cd contents in cabbage by 62.6%, 73.0%, 43.9%, and 74.3%, respectively. Both PM and PMB increased the total contents of metals (Cu, Zn, Pb, and Cd) in soil, and PMB decreased the mobility of Cu, Zn, Pb, and Cd at high application rates (≥2%). Treatment with H-PMB700 reduced CaCl2 extractable Cu, Zn, Pb, and Cd by 70.0%, 71.6%, 23.3%, and 15.9%, respectively. For Cu, Zn, Pb, and Cd fractions with BCR extraction, PMB treatments, especially PMB700, were more effective than PM in decreasing the available fractions (F1 +F2 +F3) at high application rates (≥2%). Overall, pyrolysis with high temperature (e.g., 700 â„ƒ) could significantly stabilize the toxic elements in PM and enhance PM's effect on toxic metals immobilization. The marked effects of PMB700 on toxic metal immobilization and cabbage quality improvement might be attributed to high ash contents and liming effect.


Asunto(s)
Brassica , Metales Pesados , Contaminantes del Suelo , Porcinos , Animales , Metales Pesados/análisis , Cadmio/análisis , Estiércol/análisis , Plomo/análisis , Contaminantes del Suelo/análisis , Carbón Orgánico/química , Suelo/química
6.
J Environ Manage ; 329: 117049, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563442

RESUMEN

N-doping for the preparation of functional carbon materials is a trending research topic. In this study, N-rich biochar (BC) was prepared by calcining naturally N rich shrimp shells under oxygen-limiting environment, and the calcining temperatures were controlled. BC were activated with 5% hydrochloric acid solutions and then post-modified with ball-milling to obtain a series of novel adsorbents (MBCs). All samples were characterized by SEM, BET, FT-IR, XRD, XPS, TG, and element analysis. Surface area, pore volume, and other surface functional groups were significantly improved after acidizing and ball-milling. The adsorption capacities for MB were MBC350 > MBC500 > MBC650 >BC350 > BC650 > BC500, and the equilibrium adsorption capacities were 575.01 mg/g, 506.52 mg/g, 424.59 mg/g, 113.31 mg/g, 93.53 mg/g and 86.25 mg/g, respectively. The excellent adsorption performance of MBCs for MB was ascribed to Lewis acid-base interaction, π-π interaction, electrostatic interaction and van der Waals, and the quinone group and pyridinic-N on the surface of the MBCs are identified as the major active sites. Taken together, ball-milled shrimp shell biochar is a promising material for cation dye adsorption.


Asunto(s)
Azul de Metileno , Contaminantes Químicos del Agua , Azul de Metileno/química , Espectroscopía Infrarroja por Transformada de Fourier , Carbón Orgánico/química , Carbono , Adsorción , Contaminantes Químicos del Agua/química , Cinética
7.
Chemosphere ; 312(Pt 1): 137013, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36397302

RESUMEN

Biofilms drive crucial ecosystem processes in rivers. This study provided the basis for overall quantitative calculations about the contribution of biofilms to the nitrogen cycle. At the early stage of biofilm formation, dissolved oxygen (DO) could penetrate the biofilms. As the biofilm grew and the thickness increased, then the mass transfer of DO was restricted. The microaerobic layer firstly appeared in biofilm under the turbulent flow conditions, with the appearance of the microaerobic and anaerobic layer, the nitrification and denitrification reaction could proceed smoothly in biofilm. And the removal efficiency of total nitrogen (TN) increased as the biofilm matured. Under the turbulent flow conditions, mature biofilms had the smallest thickness, but the highest proportion the anaerobic layer to the biofilm thickness, the highest density, and the highest nitrogen removal efficiency. However, the nitrogen removal efficiency of biofilm was the lowest under laminar flow conditions. The difference of layered structure of biofilm and the DO flux in biofilm explained the difference of nitrogen migration and transformation in river water under different hydrodynamic conditions. This study would help control the growth of biofilm and improve the nitrogen removal capacity of biofilm by regulating hydrodynamic conditions.


Asunto(s)
Desnitrificación , Nitrógeno , Nitrógeno/química , Eliminación de Residuos Líquidos , Reactores Biológicos , Oxígeno , Hidrodinámica , Ríos , Ecosistema , Nitrificación , Biopelículas , Agua , Aguas Residuales
8.
J Colloid Interface Sci ; 625: 965-977, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35779523

RESUMEN

Herein, a highly efficient Z-scheme SnS2/MIL-88B (Fe) (SnSFe) heterojunction was successfully synthesized to use both as photocatalysts and persulfate (PS) activator for ibuprofen (IBP) degradation. Flower-liked SnS2 was uniformly loaded on MIL-88B (Fe), and SnSFe retained the original polyhedral morphology of MIL-88B (Fe). The highest removal of IBP was achieved in the presence of SnSFe with 0.5% SnS2(SnSFe0.5). Characteristic results and density functional theory calculations demonstrated that the enhanced degradation of IBP was due to the difference in Fermi energy levels of SnS2 and MIL-88B (Fe) leading to electrons transferred from SnS2 to MIL-88B (Fe), and SnO bond was formed in SnSFe. , OH and O2- were the main active species in SnSFe0.5/PS/visible light system. Z-scheme heterojunction of SnSFe was constructed to propose the degradation mechanism. This research revealed that the synergism of photocatalysis and PS activation using SnS2/Fe-based MOFs composites possessed great potentials in wastewater remediation.


Asunto(s)
Ibuprofeno , Aguas Residuales , Luz
9.
Bioresour Technol ; 355: 127274, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35533889

RESUMEN

Biochar derived from corn stalk doping with activated carbon was produced by microwave-assisted pyrolysis and applied to sorb volatile organic compounds (VOCs: benzene and o-xylene). Specific surface area (SSA), total pore volume (TPV) and micropore volume (MV) of microwave biochar increased with increasing microwave power with the maximum values 325.2 m2·g-1, 0.181 mL·g-1 and 0.1420 mL·g-1, respectively. Adsorption capacities of benzene and o-xylene on microwave biochar ranged 6.82-54.75 mg·g-1 and 7.43-48.73 mg·g-1, which were separate positively related with SSA, TPV, and MV. Benzene adsorption was mainly dominated by surface interaction and partition mechanisms, while o-xylene adsorption was governed by pore filling. The adsorption capacities of microwave biochar for benzene and o-xylene decreased by only 0.30% and 0.99% on the 5th cycle that illustrated the reasonably good reusability of microwave biochar. The results of this research demonstrate that microwave biochar is a promising adsorbent for VOCs removal.


Asunto(s)
Pirólisis , Compuestos Orgánicos Volátiles , Adsorción , Benceno , Carbón Orgánico , Microondas
10.
J Colloid Interface Sci ; 612: 1-12, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-34974253

RESUMEN

The photocatalysis/persulfate (PS) hybrid system has proven to be a promising method for degrading organic pollutants from aqueous solutions. In this study, three MIL-88B(Fe) iron-based metal-organic framework (MOF) phases with different facet content were prepared and used both as photocatalysts and catalysts for PS activation to remove ibuprofen (IBP). The results showed that there was a close correlation between the exposed facets and the catalytic activity. MIL-88B(Fe)-1 (M88B1) with exposed {100} facets and proportionally more {101} facets showed the best catalytic activity. The optimum PS dosage used in this study was 60 mg/L. The presence of Cl-, SO42-, and NO3- all inhibited the degradation of IBP. X-ray photoelectron spectroscopy (XPS) showed that M88B1 possessed more Fe2+ than the other two MIL-88B(Fe) MOF phases, making it easier to generate active radicals through PS activation. The UV-vis diffuse reflectance spectra (DRS), photoluminescence (PL), and electrochemical analysis indicated that M88B1 possessed the highest light absorption, most active sites, and fastest charge transfer ability. Radical scavenging and electron spin resonance (ESR) experiments demonstrated that SO4-•, •OH, O2-•, and 1O2 species participated in the IBP degradation process. Furthermore, density functional theory (DFT) calculations were performed to identify the crystallographic facets, band structure, and total density of states of MIL-88B(Fe) to further confirm the mechanism of MIL-88B(Fe) as a photocatalyst and a PS activator. This work provides new insights into the synergism between photocatalysis and persulfate activation by facet-controlled MOFs for environmental remediation.


Asunto(s)
Ibuprofeno , Estructuras Metalorgánicas , Catálisis , Luz
11.
J Hazard Mater ; 423(Pt A): 127098, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34523485

RESUMEN

Nano zero-valent iron (nZVI) is an effective material for Cr(VI) treatment, however excessive agglomeration and surface oxidation limit its application. Herein, straw derived hierarchically porous carbon supported FeNi bimetallic nanoparticles (FeNi@HPC) was prepared for effective removal of Cr(VI) from water. FeNi nanoparticles were successfully loaded onto HPC with good dispersibility, and HPC caused an increase in specific surface area of FeNi nanoparticles. FeNi@HPC exhibited a significantly enhanced removal efficiency for Cr(VI) in comparison to Fe@HPC and FeNi NPs. The Ni doping content was further optimized, and the best Ni content in bimetallic NPs was estimated as 10 wt%. The conditions optimal for the activity of FeNi@HPC were assessed, and the highest removal efficiency equivalent to 30 mg L-1 of Cr(VI) was achieved at pH= 4.0 in 360 min with a dosage of 0.5 g L-1. Higher temperatures favored the removal of Cr(VI) and FeNi@HPC manifested the lowest activation energy as compared to Fe@HPC and FeNi NPs. The action mechanisms of FeNi@HPC presumably involved electron transfer from Fe0, Fe2+and atomic hydrogen. This work not only provide a cost-effective and available HPC material to stabilize nZVI but also revealed that using FeNi@HPC is a promising approach for the remediation of water pollution.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Adsorción , Biomasa , Carbono , Cromo/análisis , Porosidad , Agua , Contaminantes Químicos del Agua/análisis
12.
Nanomaterials (Basel) ; 11(6)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34072183

RESUMEN

The reactivity of nanoscale zero-valent iron is limited by surface passivation and particle agglomeration. Here, Ni/Fe bimetallic nanoparticles embedded into graphitized carbon (NiFe@GC) were prepared from Ni/Fe bimetallic complex through a carbothermal reduction treatment. The Ni/Fe nanoparticles were uniformly distributed in the GC matrix with controllable particle sizes, and NiFe@GC exhibited a larger specific surface area than unsupported nanoscale zero-valent iron/nickel (FeNi NPs). The XRD results revealed that Ni/Fe bimetallic nanoparticles embedded into graphitized carbon were protected from oxidization. The NiFe@GC performed excellently in 2,4,6-trichlorophenol (TCP) removal from an aqueous solution. The removal efficiency of TCP for NiFe@GC-50 was more than twice that of FeNi nanoparticles, and the removal efficiency of TCP increased from 78.5% to 94.1% when the Ni/Fe molar ratio increased from 0 to 50%. The removal efficiency of TCP by NiFe@GC-50 can maintain 76.8% after 10 days of aging, much higher than that of FeNi NPs (29.6%). The higher performance of NiFe@GC should be ascribed to the significant synergistic effect of the combination of NiFe bimetallic nanoparticles and GC. In the presence of Ni, atomic H* generated by zero-valent iron corrosion can accelerate TCP removal. The GC coated on the surface of Ni/Fe bimetallic nanoparticles can protect them from oxidation and deactivation.

13.
Sci Rep ; 11(1): 4293, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33619317

RESUMEN

Fenton-like system formed in a natural soil environment deemed to be significant in the aging process of biochar. Aged biochars have distinct physico-chemical and surface properties compared to non-aged biochar. The aged biochar proved to be useful soil amendment due to its improved elements contents and surface properties. The biochar aging process resulted in increased surface area and pore volume, as well as carbon and oxygen-containing functional groups (such as C=O, -COOH, O-C=O etc.) on its surface, which were also associated with the adsorption behavior of 2,4,6-trichlorophenol (2,4,6-TCP). The biochar aging increased the adsorption capacity of 2,4,6-TCP, which was maximum at pH 3.0. The 2,4,6-TCP adsorption capacity of aged-bush biochar (ABB) and aged-peanut shell biochar (APB) was increased by 1.0-11.0% and 7.4-38.8%, respectively compared with bush biochar (BB) and peanut shell biochar (PB) at the same initial concentration of 2,4,6-TCP. All biochars had similar 2,4,6-TCP desorption rates ranging from 33.2 to 73.3% at different sorption temperatures and times. The desorbed components were mainly 2,4,6-TCP and other degraded components, which were low in concentration with small molecule substance. The results indicated that the aged-biochar could be effective for the long-term remediation of naturally organic polluted soils.

14.
Ecotoxicol Environ Saf ; 205: 111169, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32827961

RESUMEN

The characteristics and content of organo-mineral complex were confirmed to be changed in agriculture soils under the biochar application with long-term, but the resulting environmental effects in the retention and lasting of agrochemicals and xenobiotic pollutants is far from clear. In this study, biochar-soil composites were prepared by one-step dry ball-milling method, and a sorption case study was proceed to investigate the biochar incorporated affection in soils on the transport of dimethyl phthalate (DMP). More surface oxygen-containing functional groups on ball-milled biochar enhanced its complexation with soil minerals. Sorption isotherms of DMP onto the biochar-soil composites were well described by the Freundlich model, both heterogeneous surface and multilayer interactions occurred simultaneously. The kinetics of sorption could be simulated with the pseudo-second-order model (R2 > 0.98), while the average sorption energy (Ea) calculated from Dubinin-Radushkevich isotherms were found in the range of 3.83-5.60 kJ mol-1, which revealed that the sorption processes coexist of chemisorption and physisorption, and π-π electron donor-acceptor interaction, pore-filling and hydrophobic interactions could be identified as the main sorption mechanisms. Desorption of absorbed DMP appeared obvious nonlinear characteristics and lag effect, the calculated hysteresis index (HI) increased with the application of biochar into soil. Considering the phenomenon of biochar aging and soil complexation, it is important to verify how the transport and natural attenuation of contaminant will be influenced by biochar addition, especially the long-term effect in soil ecosystem.


Asunto(s)
Carbón Orgánico/química , Ácidos Ftálicos/análisis , Contaminantes del Suelo/análisis , Suelo/química , Adsorción , Agricultura , Ecosistema , Ésteres , Cinética , Modelos Teóricos , Propiedades de Superficie
15.
Environ Res ; 183: 109241, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32062184

RESUMEN

Photochemical/photocatalytic reaction, one of the aging pathway of biochar in soil, not only changed the physicochemical properties of biochar, but also affected the migration and transformation of pollutants. Wheat straw biochar was photocatalytic aged in a Fenton-like system using organic acid as buffer solution under light sources, the organic carbon release and surface chemical changes of biochar were investigated to illustrate the adsorption behaviors. With Fe(III) or α-Fe2O3 added, the total organic carbon (TOC) of aged biochar solution was influenced more by buffer system than light sources, with the highest of 420.59 mg L-1 in citric acid system. The production of the hydroxyl radical (OH·) at citric/Fe(III) system was higher than the oxalic/Fe(III) system under the Hg lamp and showed an increasing trend with time. With light exposure, the porous structure of the biochar altered and surface area increased from 7.613 to 29.74 m2 g-1. Meanwhile, the adsorption of cadmium ion by biochar aged in citric/Fe(III) system also showed an increased adsorption capacity with a maximum of 73.54 mg g-1. So, a well understanding of biochar physicochemical properties changes under natural ecosystem was undoubtedly useful for scientific assessment the long-term feasibility of biochar as soil remediation.


Asunto(s)
Carbón Orgánico , Ecosistema , Contaminantes del Suelo , Suelo , Adsorción , Cadmio , Carbono , Compuestos Férricos
16.
Environ Int ; 136: 105439, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31918335

RESUMEN

Although interest in biochar remediation is growing, the effects of long-term biochar loading on soil environments have not been clearly confirmed. The contents and characteristics of water-soluble organic matter (WSOM) from soils after eight years of biochar remediation were investigated, and the vertical co-migration of heavy metals controlled by interactions between WSOM, soil and contaminants were also analyzed. The results showed that biochar-leaching WSOM featured high aromaticity. Fluorescence excitation-emission matrix (EEM) spectrophotometry was employed, and three primary components, including fulvic-acid-like (FA-like), tryptophan, and humic-acid-like (HA-like) compounds, were identified in the EEM spectra via parallel factor analysis models. With increasing biochar loading, FA-like and HA-like greatly increased, but tryptophan showed a weak response. Furthermore, the WSOM was freeze dried and analyzed with Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, and the results demonstrated that the BC treatment increased oxygen-containing functional groups and enhanced the complexation capability of the WSOM. Finally, the Cd and Pb concentrations in the WSOM were investigated, and Cd was found to decrease in top-soil WSOM with added BC because of increased complexation, but the Pb content increased because exchangeable and carbonate Pb converted into organic Pb. Further, the Cd and Pb concentrations decreased in sub-soil WSOM. These findings suggest that more efforts should be devoted to studying the effects of long-term biochar loading on soil environments.


Asunto(s)
Carbón Orgánico , Metales Pesados , Contaminantes del Suelo , Suelo , Agua
17.
J Hazard Mater ; 382: 121071, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31472466

RESUMEN

Effects of biotic aging on the characteristics of biochar and its water-soluble organic products were determined through a one-year laboratory incubation study. Biochar had a positive influence on microbial population size. Without microbial addition, biochars showed little change, except for an obvious increase in oxygen content from 3.2% to 6.3% after one year. By contrast, the carbon (C) content of the biologically-aged biochars continually decreased throughout the incubation at two humidity levels, suggesting that microbes consumed biochar C or encouraged organic matter solubilization. Fourier Transform Infrared Spectroscopy (FTIR) analysis indicated that all aged biochar surfaces showed increases in oxygen-containing functional groups and TG-DTG analysis showed that biologically-aged biochars were less stable than the corresponding abiotically-aged one. The release of dissolved organic matters from biologically-aged biochar logarithmically increasing with time, corresponded with of the pattern of microbe production, suggesting microbial involvement in solubilizing biochar. Combined three-dimensional excitation-emission matrix (3DEEM) and parallel factor (PARAFAC) analyses revealed that fulvic and humic acid-like components were the main water-soluble products of biologically-aged biochar, and these became increasingly rich in O-containing functional groups, i.e. humified, over time. These results highlight the importance of microbes in chemically transforming biochar and the dissolved products of biochar during aging.


Asunto(s)
Carbón Orgánico/química , Microbiota , Benzopiranos/química , Sustancias Húmicas , Microbiología del Suelo , Solubilidad , Triticum , Agua/química
18.
J Hazard Mater ; 384: 121265, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31581012

RESUMEN

Long-term studies on the environmental effects following biochar additions to soils, while plentiful, are predominantly focused on the soil fertility, whereas few are on the soil organo-mineral complexes. This study examines the changes of organo-mineral complexes in an acidic paddy soil and a saline-alkali soil which were remediated using biochar for approximately 8 years and 3 years, respectively. The results showed that loosely combined humus increased by 30.1% and 25.1% with the application of 40 t ha-1 biochar in the acidic paddy soil and the saline-alkali soil, respectively. Meanwhile, an increase of cement (Fe-oxides) was the contributor to the rise of the complexes content. Complex iron in the saline-alkali soil were 30% higher than in the acidic paddy soil with the application of 40 t ha-1 biochar. Fourier Transform Infrared Spectroscopy showed oxygen-containing functional groups on the surface of the biochar separated from the remediated field. X-ray diffraction analysis indicated that both complexation and sedimentation were involved in heavy metal immobilization. It was found that biochar amendment mitigated the effect of acid rain leaching and reduced vertical migration of the Fe/Al-bound complex, which can prevent soil from podzolization and thus improve its fertility.


Asunto(s)
Carbón Orgánico/química , Suelo/química , Aluminio/química , Calcio/química , Arcilla/química , Hierro/química , Óxidos/química
19.
Ecotoxicol Environ Saf ; 184: 109612, 2019 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-31476450

RESUMEN

Microplastics (MPs) are small plastic pieces with size less than 5 mm that have entered and polluted the environment. While many investigations including several critical reviews on MPs in the environment have been conducted, most of them are focused on their occurrences in marine environment. Current understanding on the occurrences, behaviors, and impacts of MPs in the terrestrial environment is far from complete. A systematic review of the literature was thus conducted to promote the research on MPs in the environment. This work is designed to provide a comprehensive overview that summarizes current knowledge and research findings on environmental occurrences, fate and transport, and impacts of MPs. In addition to discussing the occurrences, characteristics, and sources of MPs in the ocean, freshwater, sediments, soils, and atmosphere, the review also summarizes both the experimental and modeling data of the environmental fate and transport of MPs. Research findings on the toxic effects, bioaccumulation, and bioavailability of MPs in the environment are also covered in this critical review. Future perspectives are discussed as well.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Contaminación Ambiental/análisis , Microplásticos/análisis , Disponibilidad Biológica , Contaminantes Ambientales/metabolismo , Contaminantes Ambientales/toxicidad , Contaminación Ambiental/efectos adversos , Microplásticos/metabolismo , Microplásticos/toxicidad , Modelos Teóricos
20.
Environ Toxicol Chem ; 38(6): 1364-1371, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30790346

RESUMEN

Soil contamination by chlorophenol compounds, such as 2,4,6-trichlorophenol (2,4,6-TCP), is of great concern because they are environmentally persistent, are difficult to degrade, and can lead to cancer. Thus, means of degrading these compounds in situ are desperately needed. Biochar was investigated as a material to sequester, reduce downward transport, and aid in soil 2,4,6-TCP degradation. In 2 column studies, wheat straw (Triticum aestivum L.)-derived biochar (pyrolyzed at 450 °C) application to soil (up to 5% by wt) improved soil water and soil organic carbon content. Biochar reduced 2,4,6-TCP downward transport, likely attributable to improved soil water mobility and retention, allowing 2,4,6-TCP to be more easily transported and sorbed to organic functional groups on biochar, leading to enhanced degradation. The 2,4,6-TCP was rapidly degraded into a combination of benzene derivatives and low-molecular weight organic compounds in the first 2 mo following biochar application. The present study provides evidence that biochars can be used to improve environmental quality by lessening the downward transport and enhancing the degradation of organochlorine compounds such as 2,4,6-TCP. Environ Toxicol Chem 2019;38:1364-1371. © 2019 SETAC.


Asunto(s)
Carbón Orgánico/farmacología , Clorofenoles/química , Contaminantes del Suelo/química , Suelo/química , Contaminación Ambiental/análisis , Espectroscopía Infrarroja por Transformada de Fourier , Triticum
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...